STEREOSELECTIVE ONE-POT SYNTHESES OF trans-3-AMINO-β-LACTAMS FROM ZINC ENOLATES OF N-PROTECTED α-AMINOACID ESTERS AND IMINES.

Fred H. van der Steen, Johann T.B.H. Jastrzebski and Gerard van Koten*.

University of Utrecht, Laboratory of Organic Chemistry, Dept. of Metal-Mediated Synthesis Padualaan 8, 3584 CH UTRECHT, The Netherlands.

<u>Abstract</u>: A new one-pot synthesis of 3-amino- β -lactams that is based on the condensation of simple imines with zinc enolates of disilyl protected glycine esters is reported. Isolated yields are high and a *trans*-selectivity is observed.

Since 2-azetidinones are useful intermediates for preparing many naturally occurring and synthetic β -lactam antibiotics, such as penicillins, cephalosporins, monobactams and thienamycin,¹ much effort has been spent on the development of short and selective procedures for their preparation.² In recent years condensation reactions of imines with metal enolates³ and silylketene acetals (Lewis-acid promoted)⁴ have been shown to be useful for constructing the 2-azetidinone ring. Most of these studies have dealt with the synthesis of thienamycin intermediates, containing a hydroxyethyl side-chain at the 3-position of the 2-azetidinone ring and only little attention has been paid to the synthesis of intermediates containing an amino group at the 3-position. Recently it was reported that the reaction of lithium enolates of protected α -aminoacid esters with N-(cyanomethyl)-amines afforded 3-amino-4-unsubstituted β -lactams in reasonable to good yields⁵ and with activated imines afforded predominantly *cis*- β -lactams in reasonable yields.⁶ In a previous paper⁷ we described a highly selective synthesis of *trans*-3-diethylamino- β -lactams from zinc enolates and imines. We now wish to report a stereoselective synthesis of *trans*-3-amino- β -lactams which are useful intermediates for the synthesis of monobactams.

Scheme 1

The zinc enolates of 2,2,5,5-tetramethyl-1-aza-2,5-disilacyclopentane-1-acetic acid ethylester (STABASE)⁸ and N,N-bis(trimethylsilyl)glycine ethylester⁹ were prepared *in situ* from the corresponding lithium enolates, *via* transmetallation with one equivalent of zinc dichloride, and reacted with imines as depicted in Scheme 1. After aqueous workup the almost pure products (Ia-f) were purified by either crystallisation or silica-gel column chromatography.

A typical procedure is as follows: STABASE (10 mmol, 2.45 g) was added to a stirred solution of LDA (10 mmol) in 25 ml of diethyl ether at -78 °C. After 10 min at - 78 °C a solution of dry ZnCl₂ (10 ml, 1.0 M in diethyl ether)¹⁰ was added and after another 15 min at -78 °C N-(benzylidene)methylamine (10 mmol, 1.19 g) was added. The solution was stirred for 1 hour at -78 °C and then allowed to reach room temperature, quenched with saturated aqueous NH₄Cl solution

and extracted with diethyl ether. The extract was washed with water, dried (Na₂SO₄) and concentrated *in vacuo* yielding 3.08 g (97%) of Ia as a pale yellow solid. The ¹H NMR spectrum showed the product to be a mixture of *cis*- and *trans*-isomers (*cis/trans* ratio 8:92).¹¹ Recrystallisation from diethyl ether/hexane afforded the pure *trans*-product as colourless crystals.

This standard procedure has been applied to the preparation of a series of β -lactams (Ia-f) reported in Table 1.¹² All reactions were carried out as one-pot syntheses on a 10 mmol scale and the reported yields are for the isolated products. These amino-protected 2-azetidinones (Ia-f) are easily desilylated by aqueous HCl to afford β -lactams with a free amino function at the 3-position.

A convenient procedure is as follows: To a solution of Ia-f in diethyl ether was added aqueous 1N HCl until the pH was ≈ 2 . After 1 hour the solution was washed with diethyl ether, basified with solid KOH to pH was ≈ 8 and then extracted with dichloromethane. Drying (Na₂SO₄), and concentration *in vacuo* afforded the desilylated products in good yields (85-95%).¹³

R	R'	R"	 yield(%) 	 cis/trans ratio [†]
-(CH2)2-	CH ₂ Ph	Ме	98	 0:100
-(CH ₂) ₂ -	Me	Ph	 97	 8:92
Me	Me	Ph	75	 0:100
-(CH ₂) ₂ -	SiMe3 ^{††} /H	Ph	 90	 30:70
Me	SiMe3 ^{††} /H	Ph	 70	11:89
-(CH ₂) ₂ -	SiMe3 ^{††} /H	C≡CSiMe ₃	 80	 7:93
	R -(CH ₂) ₂ - -(CH ₂) ₂ - Me -(CH ₂) ₂ - Me -(CH ₂) ₂ -	R R' -(CH2)2- CH2Ph -(CH2)2- Me Me Me -(CH2)2- SiMe3 ^{††} /H Me SiMe3 ^{††} /H Me SiMe3 ^{††} /H	R R' R" -(CH_2)_2- CH_2Ph Me -(CH_2)_2- Me Ph Me Me Ph -(CH_2)_2- SiMe_3 ^{††} /H Ph Me SiMe_3 ^{††} /H Ph Me SiMe_3 ^{††} /H Ph C(CH_2)_2- SiMe_3 ^{††} /H Ph	R R' R'' Vield(%) -(CH2)2- CH2Ph Me 98 -(CH2)2- Me Ph 97 Me Me Ph 97 Me Me Ph 97 Me Me Ph 97 Me SiMe3 ^{††} /H Ph 90 Me SiMe3 ^{††} /H Ph 70 -(CH2)2- SiMe3 ^{††} /H C=CSiMe3 80

Table 1 : Yields of 3-amino-2-azetidinones (Ia-f).

[†] determined by ¹H NMR integration. ^{††} upon hydrolysis replaced by a proton.

Yields of lactams (Ia,b,d and f) starting from STABASE are generally high. The lower yields of lactams (Ic and e) starting from N,N-bis(trimethylsilyl)glycine ethylester are probably caused by the lower stability of the intermediate enolates; the yield appeared to depend on the period between the addition of ZnCl₂ (to form the zinc enolate) and subsequent addition of the imine. A short period (5 min) led to reasonable yields (70-75%), whereas a longer period (1 hour) resulted invariably in lower yields (<25%). Such an effect was not observed in the reactions starting from STABASE and we believe that the enolates of STABASE are stabilized due to a favourable entropy effect.

In general these reactions of zinc enolates with imines summarized in Scheme 1 show high *trans*- stereoselectivity. This contrasts with the reactions of lithium enolates with imines.⁶ The reactions of the zinc enolates with N-(benzylidene)trimethylsilylamine show a lower *trans*-stereoselectivity than with the other imines. This is probably caused by retroaldolisation during the ring-closure step, as has been observed in reactions of Reformatsky-type enolates

with imines.¹⁴ With N-(benzylidene)- trimethylsilylamine the ring-closure to β -lactam does not take place when warming up to room temperature, but requires additional heating (30 min, 50 °C). We do not yet fully understand, why this is the case for this particular imine.

We believe that the *trans*-stereoselectivity of our synthetic route results from a rigid cyclic chairlike transition-state of a Z-enolate with an E-imine.¹⁵ Preliminary studies¹⁶ on the structures of α -aminoacid ester enolates show that, as a consequence of intramolecular coordination of the nitrogen atom, the enolate anion is chelate bonded to the metal centre, thus fixing the Z-geometry around the central double bond. Additional studies concerning the scope of the presented procedure, elucidation of the mechanism, structures of the intermediate enolates, *etc.* are underway.

References and notes:

- "Chemistry and biology of β-lactam antibiotics", Vol. 1-3, ed. by R.B. Morin and M.Gorman, Academic Press, New York (1982).
- For a recent comprehensive review of β-lactam syntheses see: G.A. Koppel, In "Small Ring Heterocycles -Azetidines, β-lactams, Diazetidines and Diaziridines", ed. by A. Hassner, Wiley, New York (1982).
- a) D-C. Ha, D.J. Hart, T.K. Yang, <u>J.Am.Chem.Soc.</u>, <u>106</u>, 4819 (1984); b) D.J. Hart, C-S. Lee, W.H. Pirkle, M.H. Hyon, A. Tsipouras, <u>J.Am.Chem.Soc.</u>, <u>108</u>, 6054 (1986); c) T. Imori, M. Shibasaki, <u>Tetrahedron Lett.</u>, <u>27</u>, 2149 (1986); d) T. Yamada, H. Suzuki, T. Mukaiyama, <u>Chem.Lett.</u>, <u>293</u> (1987); c) M. Wada, H. Aiura, K. Akiba, <u>Tetrahedron Lett.</u>, <u>28</u>, 3377 (1987); f) G. Iwasaki, M. Shibasaki, <u>Tetrahedron Lett.</u>, <u>28</u>, 3257 (1987); g) G.I. Georg, J. Kant, H.S. Gill, <u>J.Am.Chem.Soc.</u>, <u>109</u>, 1129 (1987).
- a) E.W. Colvin, D.G. McGarry, <u>J.Chem.Soc.</u>, <u>Chem.Comm.</u>, 539 (1985); b) C. Gennari, I. Venturini, G. Gislon, G. Schimperna, <u>Tetrahedron Lett.</u>, 28, 227 (1987); c) G. Guanti, E. Narisano, L. Banfi, <u>Tetrahedron Lett.</u>, 28, 4335 (1987).
- 5. L.E. Overman, T. Osawa, <u>L.Am.Chem.Soc.</u>, <u>107</u>, 1698 (1985).
- a) D.A. Burnett, D.J. Hart, J. Lin, <u>J.Org.Chem.</u>, <u>51</u>, 1930 (1986); b) G. Cainelli, D. Giacomini, M. Panunzio, G. Martelli, G. Spunta, <u>Tetrahedron Lett</u>, <u>28</u>, 5369 (1987).
- 7. J.T.B.H. Jastrzebski, F.H. van der Steen, G. van Koten, Recl. Trav. Chim. Pays-Bas, 106, 516 (1987).
- 8. K. Rühlmann, G. Kuhrt, Angew. Chem., 80, 797 (1968).
- 9. S. Djuric, J. Venit, P. Magnus, Tetrahedron Lett., 22, 1787 (1981).
- 10. It is very important to use dry ZnCl₂, otherwise the yields and stereoselectivity will be lower. Therefore ZnCl₂ was either prepared from Zn and dry HCl in diethyl ether, or commercially available ZnCl₂ was dehydrated in refluxing SOCl₂.
- 11. For trans- β -lactams ${}^{3}J_{3,4}$ is about 2 Hz, while for cis- β -lactams this value is about 6 Hz.
- 12. All products showed satisfactory ¹H NMR, ¹³C NMR and I.R. spectra.

Selected ¹H NMR data: Ia trans, δ 7.13 (s, 5H, ArH), 4.59 (d, J=15 Hz, 1H, CH₂-Ph), 3.96 (d, J=15 Hz, 1H, CH₂-Ph), 3.79 (d, J=2.2 Hz, 1H, N-CH-CH-CH₃), 3.24 (dq, J=2.2 and J=6.0 Hz, 1H, N-CH-CH-CH₃), 1.32 (d, J=6.0 Hz, 3H, N-CH-CH-CH₃), 0.74 (s, 4H, Si-CH₂-CH₂-Si), 0.15 (s, 6H, Si(CH₃)₂), 0.09 (s, 6H, Si(CH₃)₂); Ib trans, 7.17-7.44 (m, 5H, ArH), 4.10 (d, J=1.8 Hz, 1H, N-CH-CH-Ph), 4.05 (m, 1H, N-CH-CH-Ph), 2.75 (br.s, 3H, N-CH₃), 0.63-0.85 (m, 4H, Si-CH₂-CH₂-Si), 0.12 (s, 6H, Si(CH₃)₂), 0.04 (s, 6H, Si(CH₃)₂); Ib cis, 4.74 (d, J=5.6 Hz, 1H, N-CH-CH-Ph), 4.50 (d, J=5.6 Hz, 1H, N-CH-CH-Ph); Ic trans, 7.08-7.42 (m, 5H, ArH), 4.18 (d, J=1.8 Hz, 1H, N-CH-CH-Ph), 4.09 (m, 1H, N-CH-CH-Ph), 2.73 (br.s, 3H, N-CH₃), 0.20 (s, 18H, Si(CH₃)₃; Id trans, 7.12 (s, 5H, ArH), 6.29 (br.s, 1H, NH), 4.23 (d, J=2.1

Hz, 1H, N-C<u>H</u>-CH-Ph), 3.92 (d, J=2.1 Hz, 1H, N-CH-C<u>H</u>-Ph), 0.70 (s, 4H, Si-C<u>H</u>₂-C<u>H</u>₂-Si), 0.13 (s, 6H, Si(C<u>H</u>₃)₂), 0.05 (s, 6H, Si(C<u>H</u>₃)₂); **Id** cis, 4.68 (d, J=5.3 Hz, 1H, N-C<u>H</u>-CH-Ph), 4.42 (d, J=5.3 Hz, 1H, N-CH-C<u>H</u>-Ph); **Ie** trans, 7.10 (s, 5H, Ar<u>H</u>), 6.25 (br.s, 1H, N<u>H</u>), 4.25 (d, J=2.0 Hz, 1H, N-C<u>H</u>-CH-Ph), 3.98 (d, J=2.0 Hz, 1H, N-CH-C<u>H</u>-Ph), 0.19 (s, 18H, Si(C<u>H</u>₃)₃); **Ie** cis, 4.64 (d, J=5.2 Hz, 1H, N-C<u>H</u>-CH-Ph), 4.46 (d, J=5.2 Hz, 1H, N-CH-C<u>H</u>-Ph); **If** trans, 7.25 (br.s, 1H, N<u>H</u>), 4.48 (d, J=2.1 Hz, 1H, N-C<u>H</u>-CH-C=C), 3.61 (d, J=2.1 Hz, 1H, N-CH-C<u>H</u>-C=C), 0.71 (s, 4H, Si-C<u>H</u>₂-C<u>H</u>₂-Si), 0.15 (br.s, 21H, Si(C<u>H</u>₃)₂); **If** cis, 4.74 (d, J=5.4 Hz, 1H, N-C<u>H</u>-CH-C=C), 4.54 (d, J=5.4 Hz, 1H, N-CH-C<u>H</u>-C=C).

- 13. All products gave satisfactory spectroscopic data (¹H NMR, ¹³C NMR, I.R.).
- 14. F. Dardoize, J.L. Moreau, M. Gaudemar, Bull.Soc.Chim.Fr., 1668 (1973).
- 15. D.A. Evans, J.V. Nelson, T.R. Taber, In "Topics in Stereochemistry", Vol. 13, "Stereoselective Aldol Condensations", ed. by N.L. Allinger, E.L. Eliel and S.H. Wilen, Wiley, New York (1982).
- 16. To be published.

Acknowledgement: This research has been supported by Gist-Brocades N.V., The Netherlands.

(Received in UK 24 March 1988)